Membrane Maintenance

Although no single technology is the optimum for removal of all of the classes, the membrane separation technologies of MF, UF, NF and RO are the most versatile and effective in reducing all of the classes of contaminants to at least some degree.

Conventional filtration technology involves pumping the entire liquid stream through the filter medium. This is known as “dead-end” filtration. A recent development known as “crossflow” or “tangential flow” filtration allows for continuous processing of liquid streams. In this process, the bulk solution flows over and parallel to the filter surface, and because this system is pressurized (from the pump), water is forced through the filter. The turbulent flow of the bulk solution over the surface minimizes the accumulation of particulate matter on the filter and facilitates continuous operation of the system.

The most significant factor affecting the performance of membrane processing systems is membrane fouling. It is the result of insoluble materials coating the membrane surface and causing a reduction in product water quality and/or flow.

Causes of Fouling

Because all of the membrane processes involve the separation of contaminants from a solution by the action of continuously pumping water through the membrane, the resulting concentration of the contaminants increases the chances of them coating the membrane surface. Although the principle of crossflow filtration is based on the feed stream moving over the membrane surfaces at sufficiently high velocities to keep insoluble materials from settling out, in the real world, fouling can and frequently does occur. As the contaminants coat the membrane surface, they tend to plug the pores, thereby reducing the flow of product water through the membrane. Another phenomenon known as “concentration polarization” also takes place. As the fouling layer builds up, dissolved materials become trapped in the layer and cannot readily disperse back into the feed stream. As their concentration increases, they may become insoluble or actually pass through the membrane to a high degree. The net result is a product water quality that has been degraded as a direct result of the fouling layer.

Although the particular foulant is a bacterium, any of the materials described above can produce a fouling layer and cause concentration polarization.

Foulants

In general, most fouling materials fall into one of the following categories.

  • Suspended solids
  • Precipitated solids
  • Scale
  • Oxides
  • Oil/grease
  • Biological materials

In addition to serving as structures to stabilize the colonies, biofilms protect the microorganism from disinfectants and from being removed by the moving water. They also help capture food from the stream. Biofilm growth creates a layer that entraps salts and prevents the turbulent flow from thoroughly mixing the solutes in the feed stream.

As pieces of the biofilm slough off into the water stream, they release bacteria, detritus and organic polysaccharide materials known as “pyrogens” (fragments of bacteria cell walls). Some general characteristics of biofilm formation include the following.

  • After attachment of bacteria to a surface, formation of the biofilm will start almost immediately (within hours) and is very rapid, particularly in the absence of a biocide such as chlorine.
  • The type and growth rate of bacteria forming the biofilm is a function of feedwater composition, available food source in the water and the presence or absence of a biocide in the water.
  • Extent of biofilm formation is a function of the surface material, smoothness, nutrients in the feedwater, water properties such as temperature and pH, and system design characteristics such as flow and pressure.
  • A biofilm will invariably form on piping walls and other surfaces of system components in contact with the water. Turbulent flow velocities may inhibit but will not prevent the formation of biofilms.
  • With membrane systems, biofilm growth creates a layer that entraps salts and prevents the turbulent flow from thoroughly mixing the solutes in the feed stream. This concentration gradient produces the “concentration polarization” effect. In addition, under conditions of no (or low) flow, grow-through of bacteria likely will occur, contaminating the pure water on the permeate side.

Any truly effective disinfectant must not only kill bacteria but remove all traces of the biofilm – a truly daunting challenge.

Minimization of Fouling

System Design Because each type of foulant has its own particular characteristics, no one system design feature will reduce the potential for all types of fouling. In general, however, keeping the “recovery” of the system relatively low will help minimize fouling. (Recovery is defined as that percentage of the feed stream that passes through the membrane and comes out as product water.) Obviously, the higher the percentage of feed water that is forced through the membrane, the greater the danger that suspended materials or those contaminants that become insoluble at higher concentrations will foul the surface of the membrane.

Membrane element configuration Membrane devices such as spiral wound with higher packing densities exhibit less resistance to fouling. In other words, the close spacing of membrane layers required to effect a high packing density creates areas of high friction and impeded flow that tend to cause suspended and precipitated material to drop out of the bulk water stream and coat the membrane surface.

Although almost all of the membrane devices are designed to operate in the turbulent flow range (Reynolds No. >4,000), the close spacing of high packing density membrane devices creates areas of high water friction, resulting in laminar flow conditions in certain areas of the membrane device.

Even at turbulent flow, spiral wound elements are generally less tolerant to high concentrations of suspended solids than configurations such as capillary fiber or tubular. On the other hand, to maintain turbulent flow through these latter devices, much higher flow rates are required than with the more closely packed configurations such as spiral wound.

In other words, for those membrane devices that require less maintenance to overcome the effects of fouling (lower operating costs), a higher capital cost is required because more membrane elements are needed (less membrane area per element) as well as larger pumps (higher flow rate). The alternative approach is to use a spiral wound membrane with more pretreatment to reduce the suspended solids.

Because membrane fouling is the most common cause of system failure, most membrane device configurations are based on designs intended to minimize membrane fouling. Plate and frame (flat sheet), tubular and capillary fiber devices all sacrifice a certain amount of packing density or fouling resistance.

With the significantly high flux rates provided by MF and UF membranes, they can be more economically manufactured in the more fouling resistant configurations. All of these membrane technologies require pumping energy to effect the separation. Pressure requirements are dictated by the characteristics of the membrane-if the pressure is too high, it may force water through at such a high flux rate that the fouling rate becomes excessive; if the pressure is too low, it will result in insufficient permeate flow and possibly poor membrane rejection.

In the case of RO and NF membranes, osmotic pressure can play a significant role. This phenomenon is a characteristic of all ionic solute and some organic materials. It is a function of both the solute species and concentration in solution and represents backpressure, resisting the passage of permeate through the membrane. Osmotic pressure can be significant as evidenced by the fact that normal seawater (35,000 ppm TDS) requires 400 psi pressure simply to overcome its osmotic pressure. (Osmotic pressure plays almost no role in MF and UF technologies.)

Peter Cartwright
Owner of Cartwright Consulting Co

Related posts

Tackling Plastic Pollution: Innovations in Plastic Waste Management

Involving citizens for responsible waste management

Clean Mahe, pristine Mahe